Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Exponential mapping of quantitative trait loci governing allometric relationships in organisms.

Identifieur interne : 004453 ( Main/Exploration ); précédent : 004452; suivant : 004454

Exponential mapping of quantitative trait loci governing allometric relationships in organisms.

Auteurs : Chang-Xing Ma [États-Unis] ; George Casella ; Ramon C. Littell ; André I. Khuri ; Rongling Wu

Source :

RBID : pubmed:14523575

Descripteurs français

English descriptors

Abstract

Allometric scaling relationships or quarter-power rules, as a universal biological law, can be viewed as having some genetic component, and the particular genes (or quantitative trait loci, QTL) underlying these allometric relationships can be mapped using molecular markers. We develop a mathematical and statistical model for mapping allometric QTL on the basis of nonlinear power functions using Taylor's approximation theory. Simulation studies indicate that the QTL position and effect can be estimated using our model, but the estimation precision can be improved from the higher- over lower-order approximation when the sample size used and gene effects are small. The application of our approach in a real example from forest trees leads to successful detection of a QTL governing the allometric relationship between 3rd-year stem height and 3rd-year stem biomass. It is expected that our model will have broad implications for genetic, evolutionary, biomedical and breeding research.

DOI: 10.1007/s00285-003-0212-z
PubMed: 14523575


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Exponential mapping of quantitative trait loci governing allometric relationships in organisms.</title>
<author>
<name sortKey="Ma, Chang Xing" sort="Ma, Chang Xing" uniqKey="Ma C" first="Chang-Xing" last="Ma">Chang-Xing Ma</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Statistics, University of Florida, 533 McCarty Hall C, Gainesville, FL 32611, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Statistics, University of Florida, 533 McCarty Hall C, Gainesville, FL 32611</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Casella, George" sort="Casella, George" uniqKey="Casella G" first="George" last="Casella">George Casella</name>
</author>
<author>
<name sortKey="Littell, Ramon C" sort="Littell, Ramon C" uniqKey="Littell R" first="Ramon C" last="Littell">Ramon C. Littell</name>
</author>
<author>
<name sortKey="Khuri, Andre I" sort="Khuri, Andre I" uniqKey="Khuri A" first="André I" last="Khuri">André I. Khuri</name>
</author>
<author>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2003">2003</date>
<idno type="RBID">pubmed:14523575</idno>
<idno type="pmid">14523575</idno>
<idno type="doi">10.1007/s00285-003-0212-z</idno>
<idno type="wicri:Area/Main/Corpus">004403</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004403</idno>
<idno type="wicri:Area/Main/Curation">004403</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004403</idno>
<idno type="wicri:Area/Main/Exploration">004403</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Exponential mapping of quantitative trait loci governing allometric relationships in organisms.</title>
<author>
<name sortKey="Ma, Chang Xing" sort="Ma, Chang Xing" uniqKey="Ma C" first="Chang-Xing" last="Ma">Chang-Xing Ma</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Statistics, University of Florida, 533 McCarty Hall C, Gainesville, FL 32611, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Statistics, University of Florida, 533 McCarty Hall C, Gainesville, FL 32611</wicri:regionArea>
<placeName>
<region type="state">Floride</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Casella, George" sort="Casella, George" uniqKey="Casella G" first="George" last="Casella">George Casella</name>
</author>
<author>
<name sortKey="Littell, Ramon C" sort="Littell, Ramon C" uniqKey="Littell R" first="Ramon C" last="Littell">Ramon C. Littell</name>
</author>
<author>
<name sortKey="Khuri, Andre I" sort="Khuri, Andre I" uniqKey="Khuri A" first="André I" last="Khuri">André I. Khuri</name>
</author>
<author>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
</author>
</analytic>
<series>
<title level="j">Journal of mathematical biology</title>
<idno type="ISSN">0303-6812</idno>
<imprint>
<date when="2003" type="published">2003</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Chromosome Mapping (methods)</term>
<term>Computational Biology (MeSH)</term>
<term>Computer Simulation (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Inbreeding (MeSH)</term>
<term>Models, Genetic (MeSH)</term>
<term>Models, Statistical (MeSH)</term>
<term>Phenotype (MeSH)</term>
<term>Plant Physiological Phenomena (MeSH)</term>
<term>Plant Stems (anatomy & histology)</term>
<term>Plant Stems (genetics)</term>
<term>Plant Stems (physiology)</term>
<term>Plants (genetics)</term>
<term>Populus (anatomy & histology)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
<term>Quantitative Trait Loci (genetics)</term>
<term>Quantitative Trait Loci (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Algorithmes (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Biologie informatique (MeSH)</term>
<term>Cartographie chromosomique (méthodes)</term>
<term>Croisement consanguin (MeSH)</term>
<term>Génotype (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Locus de caractère quantitatif (génétique)</term>
<term>Locus de caractère quantitatif (physiologie)</term>
<term>Modèles génétiques (MeSH)</term>
<term>Modèles statistiques (MeSH)</term>
<term>Phénomènes physiologiques des plantes (MeSH)</term>
<term>Phénotype (MeSH)</term>
<term>Plantes (génétique)</term>
<term>Populus (anatomie et histologie)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Simulation numérique (MeSH)</term>
<term>Tiges de plante (anatomie et histologie)</term>
<term>Tiges de plante (génétique)</term>
<term>Tiges de plante (physiologie)</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomie et histologie" xml:lang="fr">
<term>Populus</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Plant Stems</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Stems</term>
<term>Plants</term>
<term>Populus</term>
<term>Quantitative Trait Loci</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Locus de caractère quantitatif</term>
<term>Plantes</term>
<term>Populus</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Chromosome Mapping</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Cartographie chromosomique</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Locus de caractère quantitatif</term>
<term>Populus</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plant Stems</term>
<term>Populus</term>
<term>Quantitative Trait Loci</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Animals</term>
<term>Computational Biology</term>
<term>Computer Simulation</term>
<term>Genotype</term>
<term>Humans</term>
<term>Inbreeding</term>
<term>Models, Genetic</term>
<term>Models, Statistical</term>
<term>Phenotype</term>
<term>Plant Physiological Phenomena</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Algorithmes</term>
<term>Animaux</term>
<term>Biologie informatique</term>
<term>Croisement consanguin</term>
<term>Génotype</term>
<term>Humains</term>
<term>Modèles génétiques</term>
<term>Modèles statistiques</term>
<term>Phénomènes physiologiques des plantes</term>
<term>Phénotype</term>
<term>Simulation numérique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Allometric scaling relationships or quarter-power rules, as a universal biological law, can be viewed as having some genetic component, and the particular genes (or quantitative trait loci, QTL) underlying these allometric relationships can be mapped using molecular markers. We develop a mathematical and statistical model for mapping allometric QTL on the basis of nonlinear power functions using Taylor's approximation theory. Simulation studies indicate that the QTL position and effect can be estimated using our model, but the estimation precision can be improved from the higher- over lower-order approximation when the sample size used and gene effects are small. The application of our approach in a real example from forest trees leads to successful detection of a QTL governing the allometric relationship between 3rd-year stem height and 3rd-year stem biomass. It is expected that our model will have broad implications for genetic, evolutionary, biomedical and breeding research.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">14523575</PMID>
<DateCompleted>
<Year>2004</Year>
<Month>07</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0303-6812</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>47</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2003</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Journal of mathematical biology</Title>
<ISOAbbreviation>J Math Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Exponential mapping of quantitative trait loci governing allometric relationships in organisms.</ArticleTitle>
<Pagination>
<MedlinePgn>313-24</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Allometric scaling relationships or quarter-power rules, as a universal biological law, can be viewed as having some genetic component, and the particular genes (or quantitative trait loci, QTL) underlying these allometric relationships can be mapped using molecular markers. We develop a mathematical and statistical model for mapping allometric QTL on the basis of nonlinear power functions using Taylor's approximation theory. Simulation studies indicate that the QTL position and effect can be estimated using our model, but the estimation precision can be improved from the higher- over lower-order approximation when the sample size used and gene effects are small. The application of our approach in a real example from forest trees leads to successful detection of a QTL governing the allometric relationship between 3rd-year stem height and 3rd-year stem biomass. It is expected that our model will have broad implications for genetic, evolutionary, biomedical and breeding research.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Chang-Xing</ForeName>
<Initials>CX</Initials>
<AffiliationInfo>
<Affiliation>Department of Statistics, University of Florida, 533 McCarty Hall C, Gainesville, FL 32611, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Casella</LastName>
<ForeName>George</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Littell</LastName>
<ForeName>Ramon C</ForeName>
<Initials>RC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Khuri</LastName>
<ForeName>André I</ForeName>
<Initials>AI</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>Rongling</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2003</Year>
<Month>05</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>J Math Biol</MedlineTA>
<NlmUniqueID>7502105</NlmUniqueID>
<ISSNLinking>0303-6812</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="N">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="N">Chromosome Mapping</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007178" MajorTopicYN="N">Inbreeding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="Y">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015233" MajorTopicYN="N">Models, Statistical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018521" MajorTopicYN="N">Plant Physiological Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040641" MajorTopicYN="N">Quantitative Trait Loci</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2001</Year>
<Month>11</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2003</Year>
<Month>01</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2003</Year>
<Month>10</Month>
<Day>3</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2004</Year>
<Month>7</Month>
<Day>14</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2003</Year>
<Month>10</Month>
<Day>3</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">14523575</ArticleId>
<ArticleId IdType="doi">10.1007/s00285-003-0212-z</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Theor Biol. 2002 Nov 7;219(1):121-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12392980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2000 Jul 29;355(1399):945-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11128988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Behav Genet. 1996 Sep;26(5):519-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8917951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2922-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11226342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1995 Jul;140(3):1111-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7672582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2001 Apr;157(4):1789-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11290731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Theor Appl Genet. 1995 May;90(6):776-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24172919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1995 Feb;139(2):963-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7713445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1973 Mar 23;179(4079):1201-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4689015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Mar 13;255(5050):1421-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17801232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Apr 4;276(5309):122-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9082983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Jun 4;284(5420):1677-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10356399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Oct;156(2):899-911</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11014835</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Floride</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Casella, George" sort="Casella, George" uniqKey="Casella G" first="George" last="Casella">George Casella</name>
<name sortKey="Khuri, Andre I" sort="Khuri, Andre I" uniqKey="Khuri A" first="André I" last="Khuri">André I. Khuri</name>
<name sortKey="Littell, Ramon C" sort="Littell, Ramon C" uniqKey="Littell R" first="Ramon C" last="Littell">Ramon C. Littell</name>
<name sortKey="Wu, Rongling" sort="Wu, Rongling" uniqKey="Wu R" first="Rongling" last="Wu">Rongling Wu</name>
</noCountry>
<country name="États-Unis">
<region name="Floride">
<name sortKey="Ma, Chang Xing" sort="Ma, Chang Xing" uniqKey="Ma C" first="Chang-Xing" last="Ma">Chang-Xing Ma</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004453 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004453 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:14523575
   |texte=   Exponential mapping of quantitative trait loci governing allometric relationships in organisms.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:14523575" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020